Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Unbinilium

Breakthrough in Nuclear Physics: Scientists Successfully Produce Livermorium Isotope

A groundbreaking achievement in nuclear physics has been made by an international team of scientists at Lawrence Berkeley National Laboratory, successfully producing the superheavy element livermorium (element 116). Utilizing the advanced 88-Inch Cyclotron, researchers conducted a record-breaking 10,000 trillion fusion attempts, paving the way for future discoveries of new elements, including the theorized element 120. This significant milestone enhances our understanding of atomic structure and the potential applications of superheavy elements in various scientific fields.

Pathway to Element 120 Discovered by Scientists

Scientists at Lawrence Berkeley National Laboratory have made a groundbreaking discovery that could lead to the creation of element 120. By utilizing a titanium beam for irradiation, researchers are advancing the quest for new elements, particularly in the realm of superheavy elements. This breakthrough not only addresses the challenges of synthesizing heavier elements but also opens possibilities for innovations in materials science and quantum computing.