Spin

MIT Achieves Precise Control of Ultrathin Magnet at Room Temperature

MIT researchers achieve precise control of an ultrathin magnet at room temperature, paving the way for faster and more efficient processors and computer memories. This breakthrough could lead to magnetic-based devices consuming less energy than traditional silicon-based devices, offering unprecedented speed, efficiency, and scalability. The researchers utilized pulses of electrical current to switch the direction of the device’s magnetization at room temperature, harnessing the fundamental property of electrons called spin. This development is crucial as it makes magnets composed of atomically thin van der Waals materials practical for use outside a laboratory setting.