Breakthrough Method Enhances Understanding of Quark Dynamics in Protons
Recent advancements in nuclear physics reveal a groundbreaking method for analyzing quark dynamics within protons, enhancing our understanding of particle interactions. Researchers from Brookhaven and Argonne National Laboratories introduced a novel approach to calculate the Collins-Soper kernel, crucial for studying quark motion. This method, effective for low transverse momentum quarks, promises to improve predictive capabilities in upcoming collider experiments, particularly the Electron-Ion Collider, which aims to explore proton spin origins.
Breakthrough in Particle Physics: ATLAS Collaboration Decodes Top Quark Production at LHC
Recent groundbreaking findings from the Large Hadron Collider (LHC) at CERN reveal new insights into top quark production, enhancing our understanding of particle physics and quantum chromodynamics (QCD). The ATLAS collaboration’s pioneering studies from LHC Run 2 have successfully measured top quark pair production, shedding light on the fundamental forces of the universe.