Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Photon

Researchers Discover ‘Negative Time’ in Groundbreaking Quantum Experiment

A groundbreaking experiment by researchers at the University of Toronto has revealed evidence of ‘negative time’ in quantum mechanics. This study, published in PRX Quantum, demonstrates how photons can exit a cloud of ultracold rubidium atoms before entering, challenging conventional notions of time and opening new avenues for exploration in quantum physics.

Quantum-Enhanced High-Speed Camera for Molecules Developed by Scientists in Hong Kong

Discover the groundbreaking combination of quantum entangled light sources and ultrafast stimulated Raman spectroscopy in the development of a high-speed camera for molecules. Learn how this innovative technique enhances both temporal and spectral resolution in spectroscopic signals, enabling ‘high-speed imaging’ of ultrafast processes within molecular systems. Explore the significance of stimulated Raman spectroscopy in offering a more efficient alternative to traditional methods for analyzing molecular dynamics and interactions.

Advancement in Photon Emission Control Technology at University of Twente

Researchers at the University of Twente in the Netherlands have made a groundbreaking advancement in photon emission control technology, potentially revolutionizing the efficiency of portable screens and electronic devices. The team introduced a new device that can precisely regulate the emission of photons with unparalleled accuracy, leading to smartphones that require less frequent charging and potentially lasting an entire week on a single charge. This innovative technology has the potential to enhance the performance of miniature light sources, improve sensor sensitivity, and create stable quantum bits essential for quantum computing applications.

Caltech Researchers Develop Groundbreaking Quantum Imaging Technique

Caltech researchers have developed a groundbreaking new quantum imaging technique, ICE, which utilizes entangled photon pairs to overcome challenges in quantum imaging. This technique has the potential to revolutionize biomedical imaging and remote space sensing, offering higher-resolution images of biological materials and precise measurements of birefringent properties.

Large Hadron Collider Discovers Rare Higgs Boson Behavior

The world’s biggest proton-smasher has revealed a new, rare behavior of the famed Higgs boson. Detectors at the Large Hadron Collider spotted the particle decaying into a photon and a ‘Z boson’. This type of Higgs boson decay was predicted…