Neutron Star Mergers Shed Light on Dark Matter
Neutron star mergers provide new physics signals that could shed light on dark matter, according to a study by Washington University in St. Louis. The study, led by physicist Bhupal Dev, establishes constraints on axion-like particles using observations from the 2017 neutron star merger event, GW170817. These particles are prime candidates for constituting dark matter and could bridge the gap between the visible and dark sectors of the universe.
Groundbreaking Discovery of Heavy Element Creation in Cosmos
Scientists have made a groundbreaking discovery using the James Webb Space Telescope (JWST) and the Hubble Space Telescope, revealing new insights into the creation of heavy elements in the cosmos. The collision of two ultradense neutron stars led to the production of metals heavier than iron and silver, including gold. This discovery challenges previous beliefs about the origins of gamma-ray bursts and opens up new avenues for understanding cosmic processes.