Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Microscopy

Revolutionary Electron Microscopy Project Aims to Transform Understanding of Chemical Reactions

Researchers from the University of Illinois Chicago have launched the MOSAIC project, backed by a $1.8 million NSF grant, to revolutionize electron microscopy techniques for observing chemical reactions in real-time. This initiative aims to enhance our understanding of atomic interactions and could lead to breakthroughs in materials science, drug development, and nanotechnology.

Revolutionizing Cellular Force Measurement with Quantum-Enhanced Diamond Molecular Tension Microscopy

Discover the groundbreaking Quantum-Enhanced Diamond Molecular Tension Microscopy (QDMTM) developed by researchers from the University of Hong Kong and Sichuan University. This label-free technique revolutionizes cellular force measurement, offering a nanoscale approach to studying cell adhesion forces. By utilizing quantum sensing technology, QDMTM provides new insights into cellular mechanics, paving the way for advancements in mechanobiology research.

Groundbreaking Microscopy Technique Reveals Previously Unseen Cells and Structures in Human Brain Tissue

A groundbreaking new microscopy technique developed by researchers at Massachusetts Institute of Technology (MIT) and Brigham and Women’s Hospital/Harvard Medical School has uncovered previously unseen cells and structures in human brain tissue. This innovative imaging method has the potential to…