Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Cas9

Breakthrough in Gene Editing: Targeted In Vivo Treatments Show Promise for Genetic Disorders

Recent advancements in gene-editing therapies are revolutionizing treatment for genetic disorders. Researchers at UT Southwestern have developed lipid nanoparticles for in vivo gene editing, showing promising results in correcting mutations linked to cystic fibrosis. This innovative approach could lead to one-time treatments that eliminate the need for complex procedures, offering hope for various genetic conditions.

Advancements in In Vivo Gene Editing for CRISPR-Based Therapies

Explore the latest advancements in CRISPR gene editing technology, including in vivo delivery of gene-editing therapies and improved manufacturing to reduce the cost of treatments. Learn about the innovative methods being developed by Nobel Laureate Jennifer Doudna and her team at the Innovative Genomics Institute to target specific cells within the body for more accessible and affordable CRISPR-based therapies.

Nanotechnology-Based CRISPR/Cas9 Delivery System for Cancer Treatment

February 1, 2024 A Breakthrough in Cancer Treatment: Nanotechnology-Based CRISPR/Cas9 Delivery System Scientists are making significant strides in the field of cancer treatment with the development of a nanotechnology-based CRISPR/Cas9 delivery system. This groundbreaking approach, detailed in a recent study…