Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Health

Scientists Develop World’s First 3D-Printed Brain Tissue with Potential to Revolutionize Neuroscience and Brain Disorder Treatments

Scientists in Wisconsin, USA, have achieved a groundbreaking feat in the field of neuroscience by developing the world’s first 3D-printed brain tissue that mimics the functionality of natural brain tissue. This development is a significant stride towards the advancement of treatments for neurological and neurodevelopmental disorders such as Alzheimer’s and Parkinson’s disease.

The innovative approach employed by the scientists involved the use of a 3D printer that departed from the conventional method of stacking layers vertically. Instead, they utilized a horizontal layering technique and placed brain cells, specifically neurons derived from induced pluripotent stem cells, in a softer ‘bio-ink’ gel compared to previous attempts.

According to Su-Chun Zhang, a professor of neuroscience and neurology at UW–Madison’s Waisman Center, the 3D-printed brain tissue provides a powerful model for understanding human brain cell communication. This breakthrough has the potential to revolutionize stem cell biology, neuroscience, and the understanding of various neurological and psychiatric disorders.

Yuanwei Yan, a scientist in Zhang’s lab, highlighted that the printed brain tissues maintained a relatively thin structure, facilitating the neurons’ access to oxygen and nutrients. The neurons demonstrated the ability to communicate, send signals, and form networks with support cells, showcasing the promising functionality of the 3D-printed brain tissue.

The precision offered by this printing technique surpasses that of brain organoids, enabling scientists to exercise control over the types and arrangements of cells, ultimately providing flexibility in research endeavors. This advancement opens up new possibilities for the study and development of treatments for a wide range of brain-related disorders.

This breakthrough holds immense potential for furthering our understanding of the human brain and developing targeted solutions for neurological and neurodevelopmental conditions. The successful replication of natural brain tissue through 3D printing marks a significant milestone in the field of neuroscience and offers hope for the future of brain disorder treatments.

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *