Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tech/Science

Revolutionizing Photosynthesis for Maximized Crop Yields

How Scientists are Revolutionizing Photosynthesis to Maximize Crop Yields

Published: January 3, 2024 2.19pm CET

Authors:

  • Jonathan Menary – Postdoctoral Researcher, Centre for Tropical Medicine and Global Health, University of Oxford
  • Sebastian Fuller – Researcher of Implementation Science, University of Oxford
  • Stefan Schillberg – Executive Director, Fraunhofer IME

Disclosure statement:

  • Jonathan Menary receives funding from the European Union
  • Sebastian Fuller receives funding from the European Commission and the UK National Institute for Health and Care Research
  • Stefan Schillberg receives funding from the European Union

Photosynthesis is the starting point for almost every food chain, sustaining most life on Earth. You would be forgiven, then, for thinking nature has perfected the art of turning sunlight into sugar. But that isn’t exactly true. If you struggle with life goals, it might reassure you to know even plants haven’t yet reached their full potential.

Every evolved trait is a trade-off between the benefit it provides and its cost in energy. The plants we domesticated for food are only as good at converting sunlight to sugar as they had to be to survive and reproduce. From a given amount of sunshine, most plants convert less than 5% of that light energy into biomass, and under some conditions, less than 1%.

We now have the knowledge and the tools to maximize photosynthesis in a range of food crops – but scientists aren’t just studying how we help plants become better at photosynthesis out of curiosity. Climate change-driven weather such as drought and flooding is destroying crops and threatening crop yields around the world. This research is about making sure we can grow enough food to feed ourselves.

Many people think of plants as nice-looking greens. Essential for clean air, yes, but simple organisms. A step change in research is shaking up the way scientists think about plants: they are far more complex and more like us than you might imagine. This blossoming field of science is too delightful to do it justice in one or two stories.

This article is part of a series, Plant Curious, exploring sci

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *