Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tech/Science

Protein structures signal fresh targets for anticancer drugs

Protein structures signal fresh targets for anticancer drugs

Cell replication in our bodies is triggered by a cascade of molecular signals transmitted between proteins. Compounds that block these signals when they run amok show potential as cancer drugs.

Scientists have uncovered the molecular mechanisms that underlie a step in the signal transmission pathway that requires three proteins to link up. The detailed knowledge about this three-protein complex, determined with synchrotron X-ray user facilities, points the way to new targets for drugs that fight certain types of cancer.

Some promising anticancer drugs work by jamming proteins that transmit signals for cells in the body to replicate. This slows the growth of tumors. However, drug-resistance mechanisms enable the signals to bypass the jam.

Scientists working on cancer treatments therefore need to gain a molecular-level understanding of the ways signaling proteins interact with each other.

In a 2022 study published in Nature, scientists used biochemical experiments combined with protein-structure studies to understand the details of a key step in the signaling pathway. The results provide a sharper picture of a process that had remained unclear despite decades of study. This could lead to improved drugs for lung, colorectal, pancreatic, and other cancers.

This work focused on one link in the cell-replication signaling chain, involving proteins known as SHOC2, PPIC, and RAS. When assembled, this three-protein complex becomes chemically active, enabling the next step in the signal cascade.

To obtain detailed information about where individual atoms in the proteins are located, the research team used electron microscopy at Genentech and protein crystallography at the Stanford Synchrotron Radiation Laboratory.

To understand how the three proteins fit together like a jigsaw puzzle, the researchers used a technique called small-angle X-ray scattering (SAXS) at the Advanced Light Source, a Department of Energy Office of Science light source user facility at Lawrence Berkeley National Laboratory.

Using the SAXS data, the researchers were able to capture snapshots of the large, flexible protein complex in native form (suspended in solution). This allowed them to model

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *