Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tech/Science

NASA’s Tiny 36-Pixel Sensor Revolutionizes Space Science

NASA Develops Tiny Yet Mighty 36-Pixel Sensor

While NASA’s James Webb Space Telescope is helping astronomers craft 122-megapixel photos 1.5 million kilometers from Earth, the agency’s newest camera performs groundbreaking space science with just 36 pixels. Yes, 36 pixels, not 36 megapixels.

The X-ray Imaging and Spectroscopy Mission (XRISM), pronounced “crism,” is a collaboration between NASA and the Japan Aerospace Exploration Agency (JAXA). The mission’s satellite launched into orbit last September and has been scouring the cosmos for answers to some of science’s most complex questions ever since. The mission’s imaging instrument, Resolve, has a 36-pixel image sensor.

It’s not often that a person could look at an image sensor with the naked eye and see individual pixels. This six-by-six pixel array measures 0.2 inches (five millimeters) per side, which is not so different from the image sensor in the Apple iPhone 15 and 15 Plus. The main camera in those smartphones is eight by six millimeters, albeit with 48 megapixels. That’s 48,000,000 pixels, just a handful more than 36.

This graphic, courtesy of NASA, shows the size of a single pixel on the Resolve camera (left) versus a pixel in a typical smartphone camera (right).

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *