Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Health

Australian Scientists Make Major Discovery in RNA-Based Therapeutics

Australian scientists have made a major discovery that could underpin the next generation of RNA-based therapeutics, and lead to more potent and longer-lasting RNA-based drugs with an even wider array of potential uses.

In a paper published overnight in the journal Nature, Peter MacCallum Cancer Centre scientists Vi Wickramasinghe and Linh Ngo and collaborator Greg Goodall at the University of South Australia and SA Pathology’s Centre for Cancer Biology, have described a new pathway that could help to overcome a major drawback of RNA-based therapeutics to date.

Currently these breakthrough therapeutics utilise mRNA – injectable genetic material that produces a desired therapeutic or vaccine effect, but they can also break down quickly once absorbed into the human body.

“It’s the linear shape of mRNA that makes it relatively unstable and lack durability inside the body and this has been a limiting factor in the potential application of RNA-based therapeutics for diseases such as cancer,” explains Dr Wickramasinghe, senior author on the paper.

“For this reason, there’s a rising interest and excitement about another more robust form of RNA – known as circular or circRNA – which has the shape of a closed loop of genetic material, making it much more durable. However key features of how circRNA operates within cells has remained a mystery – until now.”

The scientists have discovered how circular RNAs, which are made in the nucleus of cells, are actively transported out of the nucleus to their site of action in the body of the cell (the “cytoplasm”). Understanding this pathway is a major step towards harnessing circRNA for therapeutic purposes, in much the same way as mRNA.

“Intriguingly, this mechanism resembles the way some proteins are transported out of the nucleus rather than the mechanisms employed to export other types of RNA,” says Prof Goodall.

“This further cements evidence these circular RNAs, of which ther

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *