Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tech/Science

Study Reveals Non-Isotropic Behavior of Tropospheric Delays in Global Navigation Satellite Systems

Global navigation satellite systems (GNSSs) provide invaluable positioning data for countless applications, from everyday navigation to scientific research. Tropospheric delays, caused by the refractive properties of the atmosphere, significantly impact the accuracy of GNSS positioning.

In a recent study published in the journal Satellite Navigation, researchers from Shandong University of Science and Technology have introduced a novel concept that Spatial Tropospheric Delays (SPDs) are non-isotropic with respect to azimuth angles, departing from traditional isotropic and anisotropic assumptions.

The study utilized three different mapping functions and conducted evaluations at five International GNSS Service (IGS) stations, employing the ray-tracing method as a benchmark. Comparing SPD accuracy using Vienna Mapping Function 3 (VMF3), the researchers found the smallest residual between VMF3-derived SPDs and ray-traced SPDs. Surprisingly, introducing a horizontal gradient correction for azimuth-dependent SPD variations showed no significant improvement in accuracy.

Dr. Ying Xu, the leading researcher of this study, emphasized the significance of this discovery, stating, “This revelation of non-isotropic tropospheric delays is a game-changer for high-precision GNSS applications. By acknowledging and understanding these variations across azimuth angles, we can develop more accurate models, significantly enhancing the reliability of GNSS positioning systems.”

The discovery of non-isotropic behavior in SPD across different azimuth angles highlights a pivotal aspect previously overlooked in tropospheric delay studies. This finding has the potential to revolutionize high-precision GNSS applications, paving the way for more accurate positioning systems in various fields.

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *