Could new technique for ‘curving’ light be the secret to improved wireless communication?
While cellular networks and Wi-Fi systems are more advanced than ever, they are also quickly reaching their bandwidth limits. Scientists know that in the near future they’ll need to transition to much higher communication frequencies than what current systems rely on, but before that can happen there are a number of—quite literal—obstacles standing in the way.
Researchers from Brown University and Rice University say they’ve advanced one step closer to getting around these solid obstacles, like walls, furniture and even people—and they do it by curving light.
In a new study published in Communications Engineering, the researchers describe how they are helping address one of the biggest logjams emerging in wireless communication.
Current systems rely on microwave radiation to carry data, but it’s become clear that the future standard for transmitting data will make use of terahertz waves, which have as much as 100 times the data-carrying capacity of microwaves. One longstanding issue has been that, unlike microwaves, terahertz signals can be blocked by most solid objects, making a direct line of sight between transmitter and receiver a logistical requirement.
“Most people probably use a Wi-Fi base station that fills the room with wireless signals,” said Daniel Mittleman, a professor in Brown’s School of Engineering and senior author of the study.
“No matter where they move, they maintain the link. At the higher frequencies that we’re talking about here, you won’t be able to do that anymore. Instead, it’s going to be a directional beam. If you move around, that beam is going to have to follow you in order to maintain the link, and if you move outside of the beam or something blocks that link, then you’re not getting any signal.”
The researchers circumvented this by creating a terahertz signal that follows a curved trajectory around an obstacle, instead of being blocked by it. The novel method unveiled in the study could help revolutionize wireless communication and highlights the future feasibility of wireless data networks that run on terahertz frequencies, according to the researchers.
“We want more data per second,” Mittleman said. “If you want to do that, you need more bandwidth, and that bandwidth simply doesn’t exist using conventional frequency bands.”
A study that could revolutionize wireless communication introduces a novel method to curve terahertz signals around an obstacle. Credit: Mittleman Group